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a b s t r a c t 

In this paper, we apply the diffuse domain framework developed in Chen and Lowengrub (Tumor growth 

in complex, evolving microenvironmental geometries: A diffuse domain approach, J. Theor. Biol. 361 

(2014) 14–30) to study the effects of a deformable basement membrane (BM) on the growth of a tumor 

in a confined, ductal geometry, such as ductal carcinoma in situ (DCIS). We use a continuum model of 

tumor microcalcification and investigate the tumor extent beyond the microcalcification. In order to solve 

the governing equations efficiently, we develop a stable nonlinear multigrid finite difference method. Two 

dimensional simulations are performed where the adhesion between tumor cells and the basement mem- 

brane is varied. Additional simulations considering the variation of duct radius and membrane stiffness 

are also conducted. The results demonstrate that enhanced membrane deformability promotes tumor 

growth and tumor calcification. When the duct radius is small, the cell-BM adhesion is weak or when 

the membrane is slightly deformed, the mammographic and pathologic tumor extents are linearly cor- 

related, as predicted by Macklin et al. (J. Theor. Biol. 301 (2012) 122–140) using an agent-based model 

that does not account for the deformability of the basement membrane and the active forces that the 

membrane imparts on the tumor cells. Interestingly, we predict that when the duct radius is large, there 

is strong cell-BM adhesion or the membrane is highly deformed, the extents of the mammographic and 

pathologic tumors are instead quadratically correlated. The simulations can help surgeons to measure 

DCIS surgical margins while removing less non-cancerous tissue, and can improve targeting of intra- and 

post-operative radiotherapy. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

d  

c  

t  

m  

f  

s  

t  

m

 

f  

D  

d  

(  

s  
1. Introduction 

Ductal carcinoma in situ (DCIS), the most common type of non-

invasive breast cancer in women, is the first stage of breast can-

cer, in which tumor cells proliferate inside the milk duct or lobule.

DCIS itself is not life-threatening, but if left untreated, DCIS may

progress and a significant proportion of these tumors may evolve

into invasive ductal carcinoma ( Erbas et al., 2006; Kerlikowske

et al., 2003; Page et al., 1982; Sakorafas and Tsiotou, 20 0 0; Sanders

et al., 2005 ). DCIS has four different morphological subtypes: mi-

cropapillary, cribriform, solid and comedo, and is typically diag-

nosed via microcalcifications in screening mammographies. Micro-

calcifications are produced when calcium is deposited in tumor

cells that have died. Tumor cells may die for a variety of reasons

including apoptosis and necrosis. When cells die, their surface re-
∗ Corresponding author. 

E-mail addresses: yingc@math.duke.edu (Y. Chen), lowengrb@math.uci.edu (J.S. 
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eptors, e.g., E-cadherins and integrins, and subcellular structures

egrade, the cell loses its liquid volume, and may eventually cal-

ify ( Panorchan et al., 2006 ). This calcified solid fraction can be de-

ected by screening mammography. While much progress has been

ade, it is still problematic to detect how far the tumor extends

rom the microcalcification ( Venkatesan et al., 2009 ). Better under-

tanding of DCIS growth and calcification can help the radiologists

o effectively use the mammograms and patient data to plan treat-

ent. 

Mathematical modeling and numerical simulations are essential

or understanding and predicting the progression and dynamics of

CIS. Xu (2004) used the radially symmetric tumor growth model

eveloped by Byrne and Chaplain (1995) to study spatial patterns

e.g., stripes, spots and uniform distributions) found in stationary

olutions of the equations. In this model, tumor growth is gov-

rned by diffusion of cell substrates and the duct wall is assumed

igid; local pressure and cellular density are neglected. Franks et al.

20 03a, 20 03b, 20 05) developed models that account for these ef-

ects, coupling existing models of avascular tumor growth with

https://doi.org/10.1016/j.jtbi.2018.12.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.12.006&domain=pdf
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echanical models for the finite deformation of a compliant base-

ent membrane. The coupling was mediated by interactions be-

ween the expansive forces created by tumor cell proliferation and

he stresses that develop in the basement membrane. Cell move-

ent was described by a Stokes flow constitutive relation. The

ffects of the material properties (i.e., the viscosity) on the tu-

or shape, and the extent to which cells adhere to the duct wall

ere studied in Franks et al. (2003a) . It was shown how stable,

on-planar, interface configurations arise, and during the initial

rogression before the duct wall in breached, few cells die and

 nutrient-rich model can be sufficient to capture the behavior.

ranks et al. (2003b) further investigated the interactions between

he expansive forces of cell proliferation and the stresses that de-

elop in the compliant basement membrane. They showed how

he duct wall deforms during tumor progression, and how tumor

rowth along the duct depends on wall stiffness. 

Rejniak (2007a) , Rejniak and Dillon (2007b) , Rejniak and

nderson (2008a) , Rejniak and Anderson (2008b) and

illon et al. (2008) applied an immersed boundary method to a

ingle-cell-based model, focusing on the biomechanical properties

f individual cells and communication between cells and their

icroenvironment. Their models included a simplified description

f the extracellular matrix (ECM) treated as viscous incompressible

uids and their models were able to reproduce several distinct

icroarchitectures of DCIS. Later, Norton et al. (2010) developed

 2D particle model of the growth of DCIS within a single breast

uct considering mechanical effects such as cellular adhesion

nd intro-ductal pressure, and biological features including pro-

iferation, apoptosis, necrosis, and cell polarity. They found that

istinct morphological subtypes of DCIS could be generated by

ifferent regions of parameter space. A hybrid continuum-discrete

odel was recently developed to investigate the effect of inter-

ctions between tumor and stroma cells in DCIS and predicted

he early stages of tumor invasion into stroma by incorporating

reakdown of the epithelium into the model ( Kim and Oth-

er, 2013 ). Gatenby et al. (2007) , Smallbone et al. (2007) , and

ilva et al. (2010) developed the cellular automata models to

nvestigate the role of hypoxia, glycolysis, and acidosis in DCIS

volution in 2D and 3D. Chapa et al. (2013) used an agent-based

odel to study the longitudinal pathogenesis of malignant trans-

ormation from normal mammary epithelium cells over a time

eriod of 40 years by integrating extensive information based on

ellular and molecular mechanisms in the pathogenesis of ductal

pithelial breast cells. The authors mainly focused on the EGF and

GF- β signaling pathways and show the effects of up- or down-

egulation of components in those pathways on cell growth and

roliferation. The authors further considered an active motive force

hich is assumed to be generated by the cells at the leading edge

f the invasive front, the chemical exchange of proteinases (MMPs)

etween tumor cells in the duct and fibroblasts/myofibroblasts

n stromal tissue and the evolution of the extracellular matrix to

odel the collective migration of tumor cells that penetrate the

asement membrane. 

Macklin et al. (2012) developed a mechanistic, agent-based cell

odel of tumor growth in DCIS in which cell motion was deter-

ined by a balance of biomechanical forces. Each cell’s phenotype

as determined by genomic/proteomic- and microenvironment-

ependent stochastic processes. The authors observed that the

ammographic and pathologic sizes were linearly correlated and

atient histopathology matched the predicted DCIS microstructure:

n outer proliferation rim surrounds a stratified necrotic core with

uclear debris on its outer edge and calcification in the center. This

ork did not consider the deformability of the basement mem-

rane or the active forces generated by stresses in the basement

embrane. We consider these effects here in our model. 
Very recently, Chen and Lowengrub (2014b) developed a math-

matical model of tumor growth in complex, dynamic microenvi-

onments with active, deformable membranes. Using a diffuse do-

ain approach, the complex domain is captured implicitly using

n auxiliary function and the governing equations are appropri-

tely modified, extended and solved in a larger, regular domain.

he boundary conditions appear as singular source terms in the

eformulated equations. The diffuse domain method enables us to

evelop an efficient numerical implementation that does not de-

end on the space dimension or on the geometry of the microen-

ironment. 

Chen and Lowengrub (2014b) applied this framework to a mix-

ure model of tumor growth in duct-like geometries in two and

hree dimensions taking into account homotypic cell-cell adhesion

nd heterotypic cell-basement membrane (BM) adhesion with the

atter being implemented via a membrane energy that models cell-

M interactions. The authors incorporated simple models of elas-

ic forces generated in the BM and the degradation of the BM and

CM by tumor-secreted matrix degrading enzymes. They investi-

ated tumor progression and BM response as a function of cell-BM

dhesion and the stiffness of the BM finding that tumor sizes tend

o be positively correlated with cell-BM adhesion since increasing

ell-BM adhesion results in thinner, more elongated tumors that

re easier for nutrients to penetrate. Prior to invasion of the tumor

nto the stroma, a negative correlation between tumor size and BM

tiffness is found as the BM elastic restoring forces tend to inhibit

umor growth. However, a stiff BM was found to promote invasive-

ess because at early stages the opening in the BM created by MDE

egradation from tumor cells tends to be narrower when the BM

s stiffer. This requires invading cells to squeeze through the nar-

ow opening and thus promotes fragmentation that then leads to

nhanced growth and invasion. 

In this paper, we extend the model of Chen and Lowen-

rub (2014b) to take into account tumor microcalcification. We

o not consider tumor invasion here since we are modeling the

arly stages of breast tumors. This paper is organized as follows.

n Section 2 , we develop a mathematical model of tumor calcifica-

ion in complex, evolving geometries using the diffuse domain ap-

roach. We briefly describe the numerical techniques and present

wo dimensional simulations in Section 3 . Finally, In Section 4 we

ive some concluding remarks and discuss future work. The nu-

erical method is described in the Appendix A . 

. Mathematical model 

In this section, we present a mathematical model of tu-

or microcalcification in complex, dynamic geometries. We first,

n Section 2.1 , consider the case when a fixed (e.g., station-

ry), bounded, open tissue domain �⊂ R 

d , d = 2 or 3 contains

he evolving tumor and membrane (e.g., see Fig. 1 ). Then, in

ection 2.2 we extend the model to the case in which tumor

rowth is constrained by the membrane. Here we focus on d =
 but the model straightforwardly extends to d = 3 ( Chen and

owengrub, 2014b ). For the sake of clarity in the derivation below

e indicate by (Hyp.) each hypothesis we make. 

.1. Modeling tumor growth and microcalcification using a mixture 

ormulation 

We begin by enumerating the key variables that describe the

tate of the system: 

• φH , the volume fraction of the host tissue, 
• φT , the volume fraction of the tumor cells, 
• φV , the volume fraction of the viable tumor cells, 
• φ , the volume fraction of the dead cells, 
D 
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Fig. 1. Initial shape of tumor clusters (red, φT = 0 . 5 contours) and basement mem- 

branes (green, ψ = 0 . 5 contours) used in the 2D simulations. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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• φC , the volume fraction of the calcified cells, 
• φW 

, the volume fraction of the water, 
• u S , the mass-averaged cell velocity, 
• u W 

, the interstitial fluid velocity, 
• p , the solid pressure, 
• q , the interstitial fluid pressure, 
• n , the nutrient concentration. 

We assume that there are no voids (i.e., the mixture is satu-

rated) and thus 

φH + φT + φW 

= 1 , (1)

where φT = φV + φD + φC . (Hyp. 1) We follow

Wise et al. (2008) and for simplicity, we assume (i) the den-

sities of each component are matched and (ii) φW 

= φ̄W 

constant,

so that φS = φH + φT = φ̄S = 1 − φ̄W 

. The latter enables us to

partially decouple the solid and liquid components and recent

results indicate that the overall behavior of the system is similar

even when the solid and liquid fractions vary ( Thomas, 2017 ).

Rescaling the solid volume fractions by φ̄S , (e.g., ˜ φT = φT /φS ,

etc) and the liquid fraction by φ̄W 

we obtain 

˜ φH + 

˜ φT = 1 and
˜ φW 

= φW 

/ ̄φW 

= 1 . Hereafter we drop the tilde notation. The vol-

ume fractions of the components are assumed to be continuous in

�, which contains both the tumor and host domains. The volume

fractions obey the mass conservation equations 

∂φi 

∂t 
+ ∇ · ( u i φi ) = −∇ · J i + S i in �, (2)

where i = H, V, D, C, W denotes the component, J i are fluxes, u i 

are velocities of each component, and S i are source terms that ac-

count for intercomponent mass exchange as well as gains due to

cell proliferation and loss due to cell death. Constitutive laws for

these quantities will be given below. Note the fluxes and source

terms have been rescaled by the densities. (Hyp. 2) Following

Wise et al. (2008) , we assume that cells are tightly packed and

they march together. Consequently, all cells move with the mass-

averaged velocity u S , e.g., u T = u D = u V = u C = u H = u S . Constitu-

tive laws for J i and the velocities u S and u W 

will be derived be-

low using a variational energy argument in an Eulerian (e.g., labo-

ratory) frame. Mass conservation of the mixture implies 
∑ 

i J i = 0

and 

∑ 

i S i = 0 (e.g., sum Eq. (2) over i ). Note this implies that

S W 

= −( S T + S H ) where S T = S V + S D . (Hyp. 3) We next assume

that (i) on the time scales considered that there is no prolifera-

tion or death of the host tissue S = 0 and (ii) that J = 0 so that
H W 
he movement of water is solely due to the source S V and to the

elocity u W 

. This implies that the sum of the fluxes of the solid

ractions J T = −J H and that S W 

= −S T . 

In order to determine the fluxes J i and the velocities u S and

 W 

in Eq. (2) , we use an energy variational argument ( Chen et al.,

014a; Wise et al., 2008 ). (Hyp. 4) Following these references, we

ssume that there is energy associated with the tumor/host in-

erface (e.g., because there are differences between the adhesive-

ess of the tumor and host cells). This can be implemented via

 Wise et al., 2008 ) 

 ad = 

γ

ε

∫ 
�

f (φT ) + 

ε2 

2 

|∇φT | 2 d x , (3)

here γ and ε are parameters that reflect the strength of the en-

rgy and the penalty for the presence of gradients in φT , respec-

ively. We can interpret this energy as E ad = 

∑ 

i = H,V,D,C E ad,i where

 ad,i = 

γi 
εi 

∫ 
� f i + 

ε2 
i 
2 |∇φi | 2 d x and we have taken γi = γ , εi = ε, and

f i = f (φT ) . (Hyp. 5) Assuming f (φ) = 

1 
4 φ

2 (1 − φ) 2 , which is a

ouble-well bulk energy, the energy (3) favors the separation of

pace into regions containing nearly all tumor cells φT ≈ 1 and

hose containing nearly all host tissue φH = 1 − φT = 1 with these

egions being separated by an interface with thickness propor-

ional to ε (see Pego, 1989; Wise et al., 2008 ). This is a diffuse-

nterface representation of the tumor-host interfacial energy. Fur-

her, E ad mimics cell-cell adhesion and its form implies that it does

ot account for differences in the adhesiveness of the different tu-

or components but that the tumor cells prefer to adhere to one

nother rather than the host tissue. The 1/ ε scaling ensures that

n the limit as ε → 0, E ad converges to a finite limit that is propor-

ional to the interface length. (Hyp. 6) To account for the presence

f the calcified cells, we assume that rather than being dispersed

hroughout the tumor, the calcified cells tend to form a solid-like

ass within the tumor, as observed in experiments. Accordingly,

e assume that there is also energy associated with the interface

etween solid-like regions of calcified cells and the rest of the tu-

or. By analogy with the tumor-host interface, this can be imple-

ented as: 

 cad = 

γC 

ε̄

∫ 
�

f (φC ) + 

ε̄2 

2 

|∇φC | 2 d x , (4)

here γ C is the strength of the energy and f is the same

ouble-well energy as used above. This energy favors the sep-

ration of the tumor domain into regions containing nearly all

alcified cells ( φC ≈ 1, φT ≈ 1) separated from the rest of the tu-

or ( φC ≈ 0, φT ≈ 1) by a diffuse interface with thickness propor-

ional to ε̄. As with the adhesion energy, the E cad can be writ-

en as a sum of appropriate energies of the individual compo-

ents. (Hyp. 7) To account for the basement membrane, we fol-

ow Chen et al. (2014a) in which we developed a simple model to

imulate the effect of an embedded deformable elastic membrane.

e modeled the membrane using an auxiliary function ψ( x, t ), e.g.

(x, t) = 1 / 2 implicitly defines the membrane location at time t ,

nd a simplified form of the elastic energy E el was given by 

 el = 

A 

2 

∫ 
�

(
ψ − 	

)
2 d x , (5)

here 	 is the reference state of the membrane taken to be its ini-

ial value 	 = ψ(x , 0) , and A represents the stiffness of the mem-

rane (e.g., a simplified version of Hooke’s law). Accounting for all

hese sources of energy, we take the energy of the mixture to be

 = E ad + E cad + E el . (6)

ote that the presence of φC in E ad (through φT ) and in E el merely

eflects the fact that there is energy associated with both the tu-

or/host interface and the interface surrounding the solid-like re-

ions of calcified cells. 
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Next, taking the time derivative of the energy, we obtain 

dE 

dt 
= 

γ

ε

∫ 
�

∂φT 

∂t 
μ d x + 

γC 

˜ ε

∫ 
�

∂φC 

∂t 
μC d x + A 

∫ 
�

( ψ − 	) 
∂ψ 

∂t 
d x ,

(7) 

here we have integrated by parts and (Hyp. 8) assumed

ero Neumann boundary conditions n · ∇φT = n · ∇φC = 0 on ∂�,

here n is the outward normal vector to ∂�. While 
∂φT 
∂t 

con-

ains 
∂φC 
∂t 

, we keep these terms separate as in the end we solve

quations for φT , φC , φD and infer φV = φT − ( φC + φD ) and φH =
 − φT . The Neumann boundary conditions imply that if the tu-

or (and calcified region) intersects ∂� then the contact angle

s 90 ° ( Chen and Lowengrub, 2014b ). However, in the simulations

resented below, we stop before the tumor hits ∂�. The functions

chemical potentials) μ and μC are given by 

= f 
′ 
(φT ) − ε2 ∇ 

2 φT , (8) 

nd 

C = f 
′ 
(φC ) − ε̄2 ∇ 

2 φC . (9) 

o determine the constitutive laws for J i , u S and u W 

we follow

ise et al. (2008) and ask (Hyp. 9) that the system (free) energy

 decreases in time in the absence of mass sources/sinks (e.g., a

losed system). In particular, we set the source terms S i = 0 to de-

ive the constitutive laws. Later, when we simulate the system with

 i � = 0, we use the same constitutive laws even though the free en-

rgy may not decrease because of external influences (e.g., nutri-

nt delivery) that drive mass changes (e.g., an open system). Next,

Hyp. 10) assuming the membrane moves with the cell velocity

 Chen et al., 2014a ) 

∂ψ 

∂t 
+ u S · ∇ψ = 0 , (10)

nd using Eq. (2) , with the source terms S i = 0 , in Eq. (7) , we ob-

ain 

dE 

dt 
= 

γ

ε

∫ 
�

( J T + u s φT ) · ∇μ dx + 

γC 

ε̄

∫ 
�

( J C + u s φC ) · ∇μC dx 

− A 

∫ 
�

u s · ( ψ − 	) ∇ψ dx 

= 

γ

ε

∫ 
�

J T · ∇μ dx + 

γC 

ε̄

∫ 
�

J C · ∇μC dx 

+ 

∫ 
�

u s ·
(
γ

ε
φT ∇ μ + 

γC 

ε̄
φC ∇ μC − A ( ψ − 	) ∇ ψ 

)
dx . 

(11) 

Hyp. 11) Assuming that each term should dissipate energy, then

e may take the fluxes and velocity to be: 

 T = −MφT ∇μ, J C = −M̄ φC ∇μC , (12) 

 S = −M S 

(
∇ p + 

γ

ε
φT ∇ μ + 

γC 

ε̄
φC ∇ μC − A (ψ − 	) ∇ ψ 

)
, (13) 

lthough other choices are possible (e.g., there could be cross-

iffusion or Stokes flow could be used instead of Darcy’s law in

q. (13) ). Here, p is a pressure that arises from the constraint that

he solid fraction is constant. In the derivation here, since we have

aken S i = 0 it follows that ∇ · u S = 0 (e.g., sum Eq. (2) over i =
, V, D, C). Further, M , M̄ are mobilities and M S is a generalized per-

eability, all of which are (Hyp. 12) assumed to be constant, which

eflects the fact that corresponding cells respond equally to the

riving forces (e.g., gradients of the chemical potentials, pressure).

aking M̄ < M implies that the calcified cells are less mobile than

he other tumor components. With these choices and (Hyp. 13) us-

ng the natural boundary conditions u · n = 0 (e.g., φ ∇μ · n = 0 =
T 
C ∇ μC · n and ( ∇ p − A ( ψ − 	) ∇ ψ ) · n = 0 ), which implies that

he tumor does not flux out of the domain, we obtain 

˙ 
 = −γ

ε

∫ 
�

MφT |∇ μ| 2 dx − γC 

ε̄

∫ 
�

M̄ φC |∇ μC | 2 dx 

−
∫ 
�

1 

M S 

| u S | 2 dx . (14) 

ow, recall that φT = φV + φD + φC , so that we may only solve

q. (2) for three of the four volume fractions φT , φV , φD and φC .

ollowing previous work ( Chen et al., 2014a; Wise et al., 2008 ),

e solve Eq. (2) for φD , φC and φT and infer φV = φT − ( φD + φC ) .

Hyp. 14) We will assume that the flux for φD is 

 D = − ˆ M φD ∇μ, (15) 

here ˆ M is the mobility of the dead cells, which is introduced to

ccount for the fact that the dead cells may be less mobile than

he viable cells. Since J T = J V + J D + J C , we obtain 

 V = −MφV ∇μ −
(
M − ˆ M 

)
φD ∇μ − φC ∇ 

(
Mμ − M̄ μC 

)
. (16) 

ote that this is different from what we assumed before in previ-

us work. In particular, the second and third terms on the right

and side of Eq. (16) did not appear in Wise et al. (2008) or

hen et al. (2014a) . These terms arise from the different mobilities

nd fluxes of the components. Nevertheless, we expect these terms

o be small. As discussed in Pego (1989) and Wise et al. (2008) ,

he gradient terms ∇μ and ∇μC are only non-zero near the

umor/host and calcified cell interfaces, respectively. Near these

nterfaces, analysis shows that these terms are O ( ε) and O ( ̄ε) ,

espectively. Therefore, J V ≈ −MφV ∇μ + O (ε) . However, since we

ever solve Eq. (2) for φV , J V is never actually used in the model. 

Finally, using the advection Eq. (10) for the membrane ψ may

ntroduce numerical instabilities due to contour bunching and the

ormation of large gradients due to local compression and expan-

ion. Therefore, (Hyp. 15) we use an advective Cahn–Hillard equa-

ion for the dynamics instead. Here, the Cahn–Hillard part of the

quation should be thought of as a regularization of advection and

oes not directly follow from the system energy. A similar ap-

roach was used previously in Chen et al. (2014a) . As a result, the

ransport of ψ is as follows 

∂ψ 

∂t 
= ∇ · ( ˜ M (ψ) ∇ ̃  μ) − u S · ∇ψ, (17) 

˜ = f 
′ 
(ψ) − ˜ ε2 ∇ 

2 ψ. (18) 

ecause the membrane has co-dimension 1 (e.g., a curve in 2 D )

e follow previous work (e.g., Aland et al., 2014; Chen et al.,

014a ) and assume (Hyp. 16) that the mobility ˜ M (ψ) is local-

zed near the interface ψ ≈ 1/2, e.g., ˜ M (ψ) = 4 ˜ M ψ 

2 (1 − ψ) 2 to

imit the dynamics of ψ to the region around the membrane. Be-

ause this system rapidly equilibrates near the interface, analysis

 Lowengrub and Truskinovsky, 1998 ; Aland et al., 2014 ) shows that

 ·
(

˜ M (ψ) ∇ ̃  μ
)

= O ( ̃  ε) . When ˜ ε is small, its effects are limited to

reventing contours of the solution from bunching across the in-

erface, which maintains a uniform thickness of the interface along

he duct. 

We assume (Hyp. 17) that the net source of viable tumor cells

 V is 

 V = λM 

nφV − λA φV − λN H (n N − n ) φV , (19) 

here the parameters λM 

, λA and λN are the mitosis, apoptosis and

ecrosis rates of tumor cells, respectively. H is a Heaviside step

unction. It is assumed (Hyp. 18) that viable tumor cells necrose

ased on the level of the local nutrient concentration n , i.e., when

he nutrient level is below the cell viability limit n N , cells die. As-

ume (Hyp. 19) that the net source of dead cells S D is 

 D = λA φV + λN H (n N − n ) φV − λL φD − λC φD , (20) 
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where λL and λC are the lysing and calcification rates of dead cells,

respectively. The net source of calcified cells is assumed (Hyp. 20)

to be 

S C = λC φD − λLC φC , (21)

where λLC is degradation rate of the calcified cells.

Macklin et al. (2012) predict that the proliferative rim and

necrotic core are mechanically separated by a small gap, which

occurs from the mechanics of necrotic cell swelling and fast lysis.

our model here doesn’t consider necrotic cell swelling, but it could

be straightforwardly extended to include this effect by introducing

another population of cells – swelling necrotic cells that then

eventually degrade once they get too big and burst. 

Assuming (Hyp. 21) that there is no proliferation or death of

the host tissue, the velocity is constrained to satisfy 

∇ · u S = S T , (22)

which yields a Poisson equation for the pressure 

−�p = S T + 

γ

ε
∇ (φT ∇ μ) + 

γC 

ε̄
∇ (φC ∇ μC ) − A ∇ (ψ∇ (	 − ψ)) , 

(23)

where S T is the sum of S V , S D and S C , i.e., 

S T = λM 

nφV − λL φD − λLC φC . (24)

Next, we briefly discuss the dynamics of the water. Because

we have assumed φW 

is constant (scaled to 1), J W 

= 0 , and S H =
0 , Eq. (2) for the water component becomes ∇ · u W 

= S W 

= −S T .

To complete the description, (Hyp. 22) we assume that the mo-

tion of the water is given by Darcy’s law u W 

= −M W 

∇q, where

q is the interstitial fluid pressure. Mass conservation requires that

∇ · ( u S + u W 

) = 0 (recall that we have rescaled the constant liq-

uid and solid volume fractions to one), which relates the solid and

interstitial pressures by ∇ · ( M S ∇ p + M W 

∇ q ) = 0 . In the following,

we do not track the dynamics of the liquid component; its dynam-

ics is solely determined by that of the tumor components. 

The nutrient diffuses through interstitial fluid to reach all cells.

For simplicity, we here model the host tissue at equilibrium. (Hyp.

23) Whatever nutrient is uptaken by the host tissue is assumed

to be replaced by supply from the normal vasculature. However,

in the tumor, not only the nutrient uptake of the tumor cells in

general greatly exceeds the supply, but also can be much higher

than that of the host tissue. Moreover, over the proliferation time

scales, the diffusive transport of nutrient dominates that from fluid

transport so that the nutrient equation is quasi-steady (Hyp. 24) .

This is because diffusion occurs over much shorter time scales (e.g.

minute) than does cell proliferation (e.g. day or more) so that the

nutrient field rapidly equilibrates, see Wise et al. (2008) . The nu-

trient is proposed to evolve quasi-statically and satisfies 

0 = ∇ · (D (φT ) ∇n ) + T C (φT , n ) − νU nφV , (25)

where the term D ( φT ) is the nutrient diffusion coefficient, which

may be different in the tumor and host domains. The term T C ( φT ,

n ) represents the nutrient source from the vasculature defined be-

low in Eq. (43) . 

2.2. Diffuse domain formulation 

We next extend the model by (Hyp. 25) assuming that the

basement membrane (BM) bounds the domain where the tumor

is growing ( Fig. 1 ). Further, we explicitly account for cell-BM adhe-

sion. We model the cell-BM adhesive energy as ( Chen and Lowen-

grub, 2014b; Jacqmin, 1999 ), 

E m 

= 

∫ 


g(φT )d s, (26)

BM 
here g ( φT ) is an energy density and BM 

denotes the BM. A varia-

ional argument shows that this introduces the boundary condition

 Granasy et al., 2007 ): 

1 

ε2 
g ′ (φT ) = −∇φT · ˆ n . (27)

aking g(φT ) = 

ε√ 

2 
( 
φ2 

T 
2 − φ3 

T 
3 ) cos (θ ) , where θ models the static

ontact angle (e.g., Aland et al., 2010; Do-Quang and Amberg, 2010;

ranasy et al., 2007; Jacqmin, 1999; Teigen et al., 2009; Teigen

t al., 2011 ), that reflects the difference in cell-cell, cell-ECM, and

CM-ECM adhesion energies. This is analogous with Young’s rela-

ion for multicomponent fluids. When θ < 90 o tumor cells prefer

o adhere to each other than to the BM while the converse is true

hen θ > 90 o . 

We consider a complex, dynamic tumor and host domain �

 Fig. 1 ), which is represented by a phase field function ψ and is

ontained in a large, fixed (e.g., stationary) regular domain �s .

he phase field function ψ approximates the characteristic func-

ion of the domain � such that ψ ≈ 1 in � and ψ ≈ 0 in �s / �. The

oundary ∂�, which may be time-dependent, is described implic-

tly using the set ∂�(t) = { x | ψ(x , t) = 1 / 2 } . 
We next reformulate Eq. (2) and the boundary conditions on

� using the diffuse domain formulation ( Aland et al., 2010; Chen

nd Lowengrub, 2014b; Li et al., 2009; Teigen et al., 2009; 2011 )

here the equations are extended into �S and the boundary con-

itions are incorporated as singular source terms. Accordingly, we

btain 

∂(ψφi ) 

∂t 
+ ∇ · (ψu i φi ) = −∇ · (ψ J i ) + ψS i in �s , (28)

here we have (Hyp. 26) assumed no-flux boundary conditions

 i · n = 0 on ∂� because the surface moves with the cells. To de-

ermine the fluxes J i and the velocities u i in Eq. (28) , we use an

nergy variation argument analogous to that in the previous sub-

ection to derive the constitutive laws, which is consistent with a

issipative biophysical energy. 

In the following we reformulate the tumor cell-cell adhesion

nergy Eq. (6) and calcified cell-cell adhesion energy Eq. (4) in the

arge domain �s as 

˜ E ad = 

γ

ε

∫ 
�s 

ψ ( f (φT ) + 

ε2 

2 

|∇φT | 2 )d x , (29)

˜ E cad = 

γC 

ε̄

∫ 
�s 

ψ( f (φC ) + 

ε̄2 

2 

|∇φC | 2 )d x , (30)

nd use a surface delta function δ to rewrite the cell-membrane

nteraction forces in the domain �s 

˜ E m 

= 

γ

ε

∫ 
�s 

δg(φT )d x , (31)

here  = ∂� and we take δ ≈ ε
2 |∇ψ | 2 as a diffuse interface ap-

roximation of the surface delta function, with ε characterizing the

idth of the diffuse boundary of the domain �. All together, the

otal free energy of the system becomes 

 total = 

˜ E ad + 

˜ E cad + 

˜ E m 

+ E el . (32)

 variational argument gives that 

μ = ψ f ′ (φT ) − ε2 ∇ · (ψ∇φT ) + εg ′ (φT ) |∇ψ | , (33)

here the term εg ′ ( φT )| ∇ψ | comes from the diffuse domain ap-

roximation of the tumor-membrane boundary condition (27) . 

Correspondingly, a generalized Darcy’s law gives 

 S = −∇ ̂

 p − ˆ γ

ε
ψ φT ∇μ − ˆ γc 

ε̄
ψ φC ∇μC + 

ˆ A ψ ∇(	 − ψ ) + v , 

(34)
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here we have incorporated the permeability M S into the mod-

fied pressure: ˆ p = M S (p + A (ψ − 	) ψ) and energies ˆ γ = M S γ ,

ˆ C = M S γC and 

ˆ A = M S A . Further, 

 = 

ˆ γ

ε

(
φT μ − ( f (φT ) + 

ε2 

2 

|∇φT | 2 ) 
)
∇ ψ − δ∇ g(φT ) . 

he term δ∇g ( φT ) comes from the active tumor-membrane

oundary, and other terms on the right hand side of v equation

ome from the cell-cell adhesion. In the remainder of the paper,

e use the modified pressure and drop the hat notation. 

Substituting the fluxes J i and the velocity u S into Eq. (28) , the

umor volume fraction φT follows a Cahn–Hilliard-type advection-

eaction-diffusion equation 

∂(ψφT ) 

∂t 
= ∇ · (MψφT ∇μ) + ψS T − ∇ · (ψφT u S ) , (35) 

here M > 0 represents the diffusive mobility of the tumor cells.

ather than solving for the volume fraction of viable tumor cells

V , a dynamic equation for the volume fraction of dead cells φD is

sed instead 

∂(ψφD ) 

∂t 
= ∇ · ( ˆ M ψφD ∇μ) + ψS D − ∇ · (ψφD u S ) . (36) 

he calcified cell volume fraction φC follows 

∂(ψφC ) 

∂t 
= ∇ · ( M̄ ψφC ∇μC ) + ψ S C − ∇ · (ψ φC u S ) , (37) 

ith μC satisfying 

 μC = ψ f ′ (φC ) − ε̄2 ∇ · (ψ∇φC ) . (38) 

nowing φT , φD , and φC , the volume fraction of viable tumor cells

s calculated as φV = φT − φD − φC , and the volume fraction of the

ost cells is recovered as φH = 1 − φT . 

Since we have assumed that φW 

remains constant and that

here is no proliferation and death of the host tissue, the velocity

s constrained to satisfy 

 · u S = 

ψ 

ψ + δ̄
S T , (39) 

here δ̄ is a small positive number. 

Together, Eqs. (34) and (39) constitute a Poisson equation for

he solid pressure p: 

�p = 

γ

ε
∇ · (φT ψ∇μ) + 

γc 

ε̄
∇ 

·(φC ψ∇μC ) − A ∇ · (ψ∇(	 − ψ)) − ∇ · v + 

ψ 

ψ + δ̄
S T . (40) 

he Quasi-steady nutrient equation is given by 

 = ∇ · (D (ψφT ) ∇n ) + T C (ψ φT , n ) − ψ νU nφV . (41) 

he diffusion coefficient D ( φT ) and nutrient capillary source term

 C ( ψφT , n ) are 

D (ψφT ) = D H (1 − Q(ψφT )) + D T Q(ψφT ) , (42) 

T C (ψφT , n ) = (νH 
P (1 − Q(ψφT )) + νT 

P Q(ψφT ))(n C − n ) , (43) 

here D H is the nutrient diffusion coefficient in the host domain,
H 
P and νT 

P denote the nutrient transfer rates for pre-existing vascu-

ature in the tumor and host domains, and n C is the nutrient level

n the capillaries. The function Q ( φ) is used to interpolate between

he tumor and host tissue, and is defined as 

(φ) = 

{ 

1 if 1 ≤ φ
φ if 0 < φ < 1 

0 if φ ≤ 0 . 

or simplicity, we take D = D here. 
H T 
Eqs. (35) –(41) and (17) –(18) are valid on the extended domain
s and not just in the tumor volume �T . To complete the system
e choose the following boundary conditions (Hyp. 27) 

n · ∇φT = n · ∇φD = n · ∇φC = n · ∇ψ = p = q = μ = μC = ˜ μ = 0 , 

n = 1 on ∂�s . 

s long as the tumor does not intersect the boundary of the ex-

ended domain �s , the results are insensitive to the choice of

oundary conditions on ∂�s . 

. Numerical results 

In order to numerically solve the governing system of equa-

ions derived in the previous section, a stable numerical scheme

eveloped in Chen and Lowengrub (2014b) ; Chen et al. (2014a) is

sed to solve the equations. The numerical method used here is

table, but not energy stable since the overall formulation is not

ully variational. Adaptive, block-structured Cartesian mesh refine-

ent is used to increase accuracy locally ( Wise et al., 2011 ). The

etails of the algorithm are given in the Appendix A . The equations

re solved in nondimensional form using the diffusion length l =
 

D/νU and a characteristic cell division time τ = λ−1 
M 

. The nondi-

ensional model takes the same form as the dimensional version;

he nondimensional parameters are given in Table 1 . 

We consider a simple duct geometry as shown in Fig. 1 . The

ed curves correspond to the tumor boundaries ( φT = 0 . 5 ) while

he green curves denote the basement membrane ( ψ = 0 . 5 ). 

Initially small clusters of tumor cells occupy the whole diam-

ter of the ductal membrane with a subset of tumor clusters at-

ached to the BM. We do not explicitly model the layer of nor-

al epithelial cells (ECs) that are also attached to the BM (away

rom the tumor), but the model could be straightforwardly ex-

ended to this case. We instead assume that the normal ECs are

isplaced by the growing tumor. We do not model the thickness

f the BM and we assume that the tumor has grown across the

umen. We also assume that the tumors are avascular with nutri-

nts supplied by diffusion from a pre-existing vasculature in the

troma by taking the nutrient capillary source term in Eq. (43) to

e T C = νH 
P (1 − Q(ψφT ))(n C − n ) . See Table 1 for the values of the

ondimensional parameters. 

We begin by investigating how the cell-membrane adhesion af-

ects tumor growth and calcification. In particular, we vary the cell-

embrane contact angle θ and investigate the evolution of the

mall tumor clusters. Recall that a small value of θ (e.g., θ < 90 °)
mplies that tumor cells strongly prefer to adhere to each other

ather than to the BM. A large value of θ (e.g., θ > 90 °) corre-

ponds to the case in which tumor cells prefer to adhere to the

M. In Fig. 2 , characteristic tumor-BM evolutions are shown at dif-

erent times (columns) for different contact angles (rows; [a]: 30 °,
b]: 90 °, [c]: 120 °, [d]: 150 °, [e]: 180 °). The locations of the tu-

or boundaries (red, φT = 0 . 5 contour), calcified cells (magenta,

C = 0 . 5 contour), necrotic cores (white) and BM (green, ψ = 0 . 5

ontour) are shown in Fig. 2 . As the tumors grow along the BM,

he deformation of the membrane is driven by the proliferation

f the tumor cells that line the ductal wall, and nutrient is de-

leted in the tumor centers where necrotic cores form ( Fig. 3 ),

hich eventually calcify. When θ = 30 ◦, the duct bulges outward

nto the stroma as the tumor cells proliferate. Negative pressures

orm near the duct wall due to resistive forces. Cells at the center

f the tumor die due to lack of nutrients and then calcify due to

oss of liquid volume. In the necrotic regions that have not calci-

ed, the pressure is negative due to cell lysis. Pressure is high in

he tumor center where cells have calcified and at the growing tips

here cells are actively proliferating, see Fig. 4 . When the cell-BM

dhesion is increased, (e.g., θ increases), the tumors advance fur-

her along the duct and the leading tips become concave rather



144 Y. Chen and J.S. Lowengrub / Journal of Theoretical Biology 463 (2019) 138–154 

Fig. 2. Tumor cluster growth in a 2D simple duct showing the necrotic core (white regions), tumor(regions inside the red curves), microcalcification (regions inside the 

magenta curves), and membrane (regions inside the green curves) with different relative strengths of cell-BM adhesion as labeled via the contact angle θ . Increasing cell- 

membrane adhesion by increasing θ leads to larger, more elongated tumors and microcalcification. The membrane stiffness A = 0 . 5 , γC = 0 . 2 , and other parameters are 

shown in Table 1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. The nutrient distribution of the tumor cluster growth shown in Fig. 2 . Nutrient diffuses from the stroma and is uptaken by tumor cells leading to lowered nutrient 

concentration in the tumor interior and the development of necrotic cores (regions inside the black curves) and microcalcification (regions inside the magenta curves). 
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Fig. 4. The pressure profile of the tumor cluster growth shown in Fig. 2 . Negative pressures form near the duct wall due to resistive forces. In the necrotic regions (regions 

inside the black curves) that have not calcified, the pressure is negative due to cell lysis. Pressure is high in the tumor center where cells have calcified (regions inside the 

magenta curves) and at the growing tips where cells are actively proliferating. 
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Fig. 5. (a): Tumor and microcalcification positions in the duct with different relative strengths of cell-BM adhesion as labeled via the contact angle θ . The red denotes 

the tumor interface and the blue denotes the boundary of the calcified region; (b): The distances between the edge of the tumor tissue and the edge of calcification with 

different relative strengths of cell-BM adhesion as labeled via the contact angle θ ; (c): A linear correlation between the mammographic calcification and the actual pathology- 

measured tumor size is predicted in our simulations; (d): The slope of a linear fit between the tumor and calcification extents based on the data simulated in Fig. 2 as a 

function of cell-BM adhesion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Nondimensional parameters in the two dimensional numerical 

simulations. The computational domain is � = (0 , 20) × (0 , 20) . 

ε 0.05 ˜ ε 0.05 

M 100.0 ˜ M 10.0 
ˆ M 60.0 M̄ 20.0 

γ 0.2 γ C 0.2 

A 0.5 νU 1.0 

νH 
p 0.2 νT 

p 0.0 

n c 1.0 λM 1.0 

λA 0.0 λN 3.0 

λL 1.0 λC 0.2 

λLC 0.0 n N 0.4 
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han convex with the degree of concavity dependent on the cell-

M adhesion. Note that the leading edges of the calcified cells re-

ain convex, and the leading edges of the necrotic cells stay con-

ex for the contact angles θ < 150 °, but become concave at later

imes for large contact angles θ ≥ 150 °. Because the tumor is more

longated along the BM, more tumor cells have access to nutrient,

hich results in more growth overall, see Fig. 3 . We do not have

irect biological evidence that ductal membranes are deformed in

he way predicted by the models. However, micropapillary or crib-

iform DCIS tumors do not fill the ductal region. Thus the case

ith high cell-BM adhesion is most similar to these types of DCIS

umors. In addition, the case with low cell-BM adhesion is most

onsistent with solid or comedo DCIS tumors. 
Because tumors (e.g., breast cancer) are detected by the calci-

cations that develop, the detected tumor is smaller than the ac-

ual tumor, as seen experimentally (e.g., see Leonard and Swain,

004; de Roos et al., 2004 ) and in Fig. 2 presented here. How-

ver, the amount by which the tumor extends beyond the calcified

ells is often hard to detect experimentally. Thus, a critical variable

he mathematical model can provide is the difference between the

eading edge of the tumor and the leading edge of the calcified

egion. Fig. 5 (a) shows the leading edges of the tumor and calci-

ed region with different relative strengths of cell-BM adhesion.

he differences between those two edges are shown in Fig. 5 (b).

s observed experimentally ( de Roos et al., 2004 ) and predicted

y Macklin et al. (2012) that the maximum calcification diameter

n mammograms and the measured pathologic tumor size have a

inear correlation. Our model also predicts a linear correlation be-

ween the mammographic calcification and the actual pathology-

easured tumor sizes, see Figs. 5 (c) and (d). Interestingly, we find

hat when the leading edges of the necrotic cells become concave

t later times (the case with θ > 150 °) the measured pathologic tu-

or sizes evolve much faster, see Fig. 5 (d) which shows the slopes

f the linear relationship between the extents of tumor and calci-

ed cells. 

Next, we investigate the effects of duct radius on tumor clus-

ers growth and tumor microcalcification formation. We vary duct

adius (denoted by small, medium and large) and cell-membrane

dhesion, see Figs. 2 and 6 . it is clearly seen that for fixed duct ra-
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Fig. 6. Effect of enlar ged duct radius on tumor clusters growth in 2D simple ducts, showing the necrotic core (white regions), tumor (regions inside the red curves), 

microcalcification (regions inside the magenta curves)), and membrane (regions inside the green curves)) with different cell-BM adhesion. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. (a): Tumor and microcalcification extents in the duct with different duct radius as a function of cell-BM adhesion at time T = 12 . 5 . The red denotes the tumor 

interface and the blue denotes the boundary of the calcified region; (b): The distances between the edge of the tumor tissue and the edge of calcification with different 

duct radius as a function of cell-BM adhesion at time T = 12 . 5 ; (c): The slope of a linear fit between the tumor and calcification extents based on the data simulated in 

Figs. 2 and 6 as a function of cell-BM adhesion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

d  

h  

W  

v  

c  

f  

m  

p  

c  

a  

m  

c  

n  

t  

s  

s  

t  

t  

t  

F  

t  

r  

r  

t

y

a

y

 

o  

a  

B  

s  

e  

B  

p  

t  

g  

(  

b  

n  

n  

n  

t  

t  

t

4

 

t  
ius, tumor clusters elongate more with larger cell-membrane ad-

esion, which is consistent with the results we observed above.

ith smaller contact angle θ (e.g., θ ≤ 90 °) tumor clusters ad-

ance faster with small duct radius, because small duct radius in-

reases the availability of nutrients to the tumor cells. Different

rom smaller contact angles, Fig. 6 shows tumor clusters elongate

ore with larger cell-membrane contact angles in large duct, in

art because the leading tips of the tumor become more con-

ave, which is easier for nutrient to penetrate. Meanwhile, It is

lso clearly seen that the leading edges of the calcified cells re-

ains convex. However, the leading edges of the necrotic cells be-

ome concave at very early times (e.g. θ ≥ 150 °). The concavity of

ecrotic regions enhances the degree of concavity of the tumor

ips, leading to much fast spread of the tumor tips. Our model

uggests a much faster growth of the measured pathologic tumor

izes for the cases with enhanced cell-membrane adhesion. The

rend can be found in Figs. 7 (a) and (b). The linear correlation be-

ween the maximum calcification diameter in mammograms and

he measured pathologic tumor size can be observed in Fig. 7 (c).

urthermore, our model suggests a quadratic correlation between

he mammographic and pathologic tumor extents with large duct

adius and strong cell-BM adhesion (e.g., θ = 170 ◦, 180 ◦). This cor-

elation can be seen through the following quadratic fits between

umor cell (y) and calcified cell (x) extents for θ = 170 ◦: 

 = 1 . 23 x 2 − 22 . 44 x + 112 . 9 , (44) 
g  
nd θ = 180 ◦: 

 = 1 . 76 x 2 − 33 . 6 x + 172 . 35 . (45) 

Finally, we consider the effects of varying membrane stiffness A

n tumor clusters progression. Characteristic tumor-BM evolutions

re shown in Figs. 2 and 8 at different times with different cell-

M adhesion. Again, from Fig. 8 we see that for fixed membrane

tiffness, increasing cell-membrane adhesion leads to thinner, more

longated tumors. As the stiffness, A, of the BM is increased the

M deformation is decreased and the tumor grows more com-

actly overall, as a result of stronger membrane restoring forces on

he duct wall. Increasing membrane stiffness enhances tumor elon-

ation along the duct. This is not the case for larger contact angle

e.g., θ ≥ 160 °) because less stiff membrane leads to more mem-

rane deformation, resulting in more tumor cells having access to

utrients and being able to proliferate. When the membrane stiff-

ess is increased, the leading edges of both calcified cells and the

ecrotic cells remain convex for any contact angles. Tumor growth

rend can be found in Figs. 9 (a) and (b). The linear correlation be-

ween the maximum calcification diameter in mammograms and

he measured pathologic tumor sizes can be observed in Fig. 9 (c). 

. Conclusion 

In this paper, we have developed a mathematical model of

umor growth and tumor microcalcification in complex, evolving

eometries with elastic, deformable membranes using a diffuse
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Fig. 8. Effect of increased duct wall stiffness ( A = 4 . 0 ) on growing tumor clusters in 2D simple ducts. The tumor (regions inside the red curves), necrotic core (white regions), 

microcalcification (regions inside the magenta curves), and membrane (regions inside the green curves) are shown for different cell-membrane adhesion. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. (a): Tumor and microcalcification extents in the duct with different membrane stiffness as a function of cell-BM adhesion at time T = 15 . The red denotes the tumor 

interface and the blue denotes the boundary of the calcified region; (b): The distances between the edge of the tumor tissue and the edge of calcification with different 

membrane stiffness as a function of cell-BM adhesion at time T = 15 ; [c]: The slope of a linear fit between the tumor and calcification extents based on the data simulated 

in Figs. 2 and 8 as a function of cell-BM adhesion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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omain approach (e.g., Aland et al., 2010; Chen and Lowengrub,

014b; Li et al., 2009; Teigen et al., 2009; Teigen et al., 2011 ). In

his methodology, the complex domain was captured implicitly us-

ng an auxiliary function and the governing equations were ap-

ropriately modified, extended and solved in a larger, regular do-

ain. The boundary conditions appeared as singular source terms

n the reformulated equations. The diffuse domain method facili-

ated an efficient numerical implementation that did not depend

n the space dimension or on the geometry of the microenviron-

ent. In this paper we considered very simple duct geometries,

ut the model can handle any microenvironmental or tumor ge-

metry that can be represented implicitly as a level surface of a

hase field function. 

We applied this framework to a mixture model of tumor

rowth and tumor microcalcification in duct-like geometries which

rise in ductal carcinoma. Besides viable and necrotic cells, we

reated calcified cells as the third component of the tumor clusters.

e modeled homotypic cell-cell adhesion and homotypic calcified

ell-cell adhesion as well as heterotypic cell-BM adhesion with the

atter being implemented via an effective contact angle between

he tumor cluster and BM that arises from differences in adhesion

nergies through the Laplace-Young equation. We modeled the BM

s an elastic membrane using a simple model of resistive forces

hat the membrane imparts on the tumor microenvironment. We

nvestigated tumor progression, tumor microcalcification and BM

esponse as a function of cell-BM adhesion, the duct size, and the

tiffness of the BM. Our model suggested that tumor sizes are pos-
tively correlated with cell-BM adhesion since increasing cell-BM

dhesion leads to thinner, more elongated tumors that are easier

or nutrients to penetrate. From Fig. 9 (a) we found that for small

ontact angles (e.g., θ ≤ 150 °) tumor sizes are positively correlated

ith BM stiffness. However, for larger contact angles (e.g., θ ≥ 160 °)
on-monotone correlation was seen between tumor sizes and BM

tiffness. Our model predicted that tumor sizes are positively cor-

elated with duct radius for larger contact angles (e.g., θ > 150 °)
nd negatively correlated for contact angles ≤ 120 °. Clearly, there

s a transition in the relationship between tumor sizes and duct ra-

ius between contact angles 120 ° and 150 °, see Fig. 7 (a). Because

icropapillary or cribriform DCIS tumors do not fill the ductal re-

ion, the results with strong cell-BM adhesion are most similar to

hese types of DCIS tumors whereas our results with small cell-BM

dhesion are most consistent with solid or comedo DCIS tumors. 

The results demonstrate that enhanced membrane deforma-

ility promotes tumor growth and tumor calcification and that

he mammographic and pathologic tumor sizes are linearly cor-

elated with small duct radius or weak cell-BM adhesion as pre-

icted by Macklin et al. (2012) using an agent-based model that

oes not account for the deformability of the basement mem-

rane and the active forces that the membrane imparts on the

umor cells. However, quadratic correlations between the sizes of

he mammographic and pathologic tumor clusters are predicted

hen the duct radius is larger and cell-BM adhesion is strong (e.g.,

= 170 ◦, 180 ◦). While we do not have direct biological evidence

hat ductal membranes are deformed in the way predicted by the
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models, in experiments ducts can be found showing either dis-

torted and undistorted morphologies. 

There are several ways in which the results in this paper can

be extended. First, the model of BM-induced forces can be made

more realistic. For example, we have recently extended the model

to take into account bending forces induced by the BM using a

Helfrich-like model ( Du et al., 2004; Helfrich, 1973; Torabi et al.,

2009 Feng et al., 2018; Chen et al., 2018 ). The new model is fully

variational and we are able to develop an energy stable numerical

scheme to solve the nonlinear system efficiently. This is the subject

in a forthgoing paper. In addition, local elastic stresses can be in-

cluded following the approach described in Bresch et al. (2010) and

Cottet and Maitre (2004) . Second, different from the tumor clus-

ters we considered in this paper where tumors contain three com-

ponents: viable cells, dead cell, and calcified cells, we can model

calcified cells as a separated phase from the tumor clusters. This

would help us to investigate correlations between tumor cells and

calcified cells under different tumor cell and calcified cell adhesion.
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Appendix A 

A stable time-discretization scheme 

We discretize the nutrient equation using the centered

finite difference and simply extend the stable scheme in

Chen et al. (2014a) to which our problem reduces when ψ = 1 . Let

u 

k +1 
S 

= −∇ p k +1 − γ
ε φk 

T 
ψ 

k ∇ μk +1 − γc 
ε̄ φk 

C 
ψ 

k ∇ μk +1 
C 

+ Aψ 

k ∇ (	k +1 −
ψ 

k +1 ) + v k , in this way we can rewrite the equations in an equiv-

alent form in which the velocity does not appear explicitly. Then

the semi-implicit scheme for the equations is 

ψ 

k φk +1 
T − ψ 

k φk 
T = s ∇ · ((Mψ 

k φk 
T + 

γ

ε
(φk 

T ) 
2 (ψ 

k ) 2 ) ∇μk +1 ) 

+ s ∇ · (φk 
T ψ 

k ∇p k +1 ) + s ∇ 

·
(
γc 

ε̄
φk 

T φ
k 
C (ψ 

k ) 2 ∇μk +1 
C 

)
− sA ∇ · (φk 

T (ψ 

k ) 2 ∇(	k +1 − ψ 

k +1 )) 

− s ∇ · (ψ 

k φk 
T v 

k ) + sψ 

k S T , 

ψ 

k μk +1 = ψ 

k f ′ c (φ
k +1 
T ) − ε2 ∇ · (ψ 

k ∇φk +1 
T ) − ψ 

k f ′ e (φ
k 
T ) 

+ 

ε√ 

2 

φk 
T (1 − φk 

T ) |∇ψ 

k | cos θ, 

ψ 

k φk +1 
D − ψ 

k φk 
D = s ∇ · (( ˆ M ψ 

k φk 
D + 

γ

ε
φk 

D φ
k 
T (ψ 

k ) 2 ) ∇μk +1 ) 

+ s ∇ · (φk 
D ψ 

k ∇p k +1 ) 

+ s ∇ · ( γc 

ε̄
φk 

D φ
k 
C (ψ 

k ) 2 ∇μk +1 
C ) 

− sA ∇ · (φk 
D (ψ 

k ) 2 ∇(	k +1 − ψ 

k +1 )) 

− s ∇ · (ψ 

k φk 
D v 

k ) + sψ 

k S D , 

ψ 

k φk +1 
C − ψ 

k φk 
C = s ∇ · ( γ

ε
φk 

T φ
k 
C (ψ 

k ) 2 ) ∇μk +1 ) 

+ s ∇ · (φk 
C ψ 

k ∇p k +1 ) 
∇
+ s ∇ ·
(

M̄ ψ 

k φk 
C + 

γc 

ε̄
(φk 

C ) 
2 (ψ 

k ) 2 ∇μk +1 
C 

)
− sA ∇ · (φk 

C (ψ 

k ) 2 ∇(	k +1 − ψ 

k +1 )) 

− s ∇ · (ψ 

k φk 
C v 

k ) + sψ 

k S C , 

ψ 

k μk +1 
C = ψ 

k f ′ c (φ
k +1 
C ) − ε̄2 ∇ · (ψ 

k ∇φk +1 
C ) − ψ 

k f ′ e (φ
k 
C ) , 

−∇ 

2 p k +1 = 

γ

ε
∇ · (φk 

T ψ 

k ∇μk +1 ) + 

γc 

ε̄
∇ 

·(φk 
C ψ 

k ∇μk +1 
C ) − A ∇ · (ψ 

k ∇(	k +1 − ψ 

k +1 )) 

−∇ · v k + S k +1 
T 

ψ 

k +1 

ψ 

k +1 + δ̄
, 

ψ 

k +1 − ψ 

k = 

sγ

ε
∇ · (φk 

T (ψ 

k ) 2 ∇μk +1 ) 

+ s ∇ · (ψ 

k ∇p k +1 ) + s ∇ · ( ˜ M (ψ 

k ) ∇ ̃  μk +1 ) 

− sψ 

k ∇ 

2 p k +1 

+ 

sγc 

ε̄
∇ · (φk 

C (ψ 

k ) 2 ∇μk +1 
C ) − sγ

ε
ψ 

k ∇ 

·(φk 
T ψ 

k ∇μk +1 ) − sγc 

ε̄
ψ 

k ∇ · (φk 
C ψ 

k ∇μk +1 
C ) 

− sA ∇ · ((ψ 

k ) 2 ∇(	k +1 − ψ 

k +1 )) 

+ sAψ 

k ∇ · (ψ 

k ∇(	k +1 − ψ 

k +1 )) − s v k · ∇ψ 

k ,

˜ μk +1 = f ′ c (ψ 

k +1 ) − ˜ ε2 ∇ 

2 ψ 

k +1 − f ′ e (ψ 

k ) , 

here we take S T = 

S k 
T 
+ S k +1 

T 
2 , S D = 

S k 
D 
+ S k +1 

D 
2 , and s is the time step

ize. The nutrient concentration equation is discretized as 

 = ∇ · (D (φk +1 
T ) ∇n 

k +1 ) 

− n 

k +1 
[
(φk +1 

T − φk +1 
D ) ψ 

k + νH 
p (1 − Q(ψ 

k +1 φk +1 
T )) 

+ νT 
p Q(ψ 

k +1 φk +1 
T ) 

]
+ n c (ν

H 
p (1 − Q(ψ 

k +1 φk +1 
T )) + νT 

p Q(ψ 

k +1 φk +1 
T )) . 

inite difference discretization 

Here we assume that the computational domain �s is rectan-

ular, i.e., �s = (0 , N x h ) × (0 , N y h ) , where N x and N y are positive

ntegers, and h > 0 is the spatial step size. Define x i = (i − 1 / 2) h

nd y i = (i − 1 / 2) h, where i is an integer or half integer. Con-

ider the following three set of uniform grid points: (i) east-west

dge points E ew , (ii) north-south edge points E ns , (iii) cell-centered

oints C, defined via 

 

ew = { (x i + 1 2 
, y j ) | i = 0 , · · · , N x , j = 1 , · · · , N y } , 

E ns = { (x i , y j+ 1 2 
) | i = 1 , · · · , N x , j = 0 , · · · , N y } , 

C = { (x i , y j ) | i = 0 , · · · , N x + 1 , j = 0 , · · · , N y + 1 } . 
Real-valued grid functions whose domains equal E ew are called

ast-west edge-centered functions and are identified via f 
i + 1 

2 
, j 

=
f (x 

i + 1 
2 
, y j ) ; those whose domains equal E ns are called north-south

dge-centered functions and are identified via f 
i, j+ 1 

2 
= f (x i , y j+ 1 

2 
) ;

nd those whose domains equal C are called cell-centered func-

ions and are identified via φi, j = φ(x i , y j ) . The velocities v is

pproximated as edge-centered functions. For example, writing

 = (v ew , v ns ) , v ew is approximated as an east-west edge-centered

unction, and v ns is approximated as a north-south edge-centered

unction. All other dependent variable are approximated as cell-

entered functions. 

To complete the spatial discretization, we replace spatial deriva-

ives by difference operators. The Laplacian operator is approxi-

ated to second order by 

 

2 
d φi, j = 

φi +1 , j + φi −1 , j + φi, j+1 + φi, j−1 − 4 φi, j 

h 

2 
, 
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here φ is cell-centered. The Laplacian with non-constant diffusiv-
ty/mobility is approximated to second order via 

 d · (m ∇ d φ) i, j = 

A x m i + 1 2 , j (φi +1 , j − φi, j ) − A x m i − 1 
2 , j (φi, j − φi −1 , j ) 

h 2 

+ 

A y m i, j+ 1 2 
(φi, j+1 − φi, j ) − A y m i, j− 1 

2 
(φi, j − φi, j−1 ) 

h 2 
, 

where both φ and m are assumed to be cell-centered, and A x and

 y are the averaging operators defined component-wise as 

 x m i + 1 2 , j = 

m i +1 , j + m i, j 

2 

, A x m i − 1 
2 , j = 

m i, j + m i −1 , j 

2 

, 

A y m i, j+ 1 2 
= 

m i, j+1 + m i, j 

2 

, A y m i, j− 1 
2 

= 

m i, j + m i, j−1 

2 

. 

To calculate the advection term ∇ · ( v φ), where φ is cell-

entered and v is the edge-centered cell velocity, we use the third-

rder WENO reconstruction method ( Jiang and Shu, 1996 ), with

he simple upwind flux. In particular, we approximate ∇ · ( v φ) by 

 d · (v φ) i, j = ∇ d · f i, j = 

f ew 

i + 1 2 , j 
− f ew 

i − 1 
2 , j 

h 

+ 

f ns 
i, j+ 1 2 

− f ns 
i, j− 1 

2 

h 

. 

he field f = ( f ew , f ns ) is the numerical upwind flux and is deter-

ined by 

f ew 

i + 1 2 , j 
= v ew 

i + 1 2 , j 
W 

ew 

i + 1 2 , j 
(φ) , 

f ns 
i, j+ 1 2 

= v ns 
i, j+ 1 2 

W 

ns 
i, j+ 1 2 

(φ) , 

here W 

ew 

i + 1 
2 

, j 
(φ) is the upwind WENO reconstruction of φ to the

ast-west cell edges, and W 

ns 

i, j+ 1 
2 

(φ) is the upwind WENO recon-

truction of φ to the north-south cell edges. 

The fully discrete stable scheme is thus given by 

ψ 

k 
i, j φ

k +1 
T i, j 

− ψ 

k 
i, j φ

k 
T i, j 

= s ∇ d · ((Mψ 

k φk 
T + 

γ

ε
(φk 

T ) 
2 (ψ 

k ) 2 ) ∇ d μ
k +1 ) i, j

+ s ∇ d · (φk 
T ψ 

k ∇ dp k +1 ) i, j 

+ s ∇ d ·
(
γc 

ε̄
φk 

T φ
k 
C (ψ 

k ) 2 ∇ d μ
k +1 
C 

)
i, j 

− sA ∇ d · (φk 
T (ψ 

k ) 2 ∇ d (	
k +1 − ψ 

k +1 )) i, j 

− s ∇ d · (ψ 

k φk 
T v 

k ) i, j + sψ 

k 
i, j S T i, j 

, 

ψ 

k 
i, j μ

k +1 
i, j 

= ψ 

k 
i, j f 

′ 
c (φ

k +1 
T i, j 

) − ε2 ∇ d · (ψ 

k ∇ d φ
k +1 
T ) i, j 

−ψ 

k 
i, j f 

′ 
e (φ

k 
T i, j 

) 

+ 

ε√ 

2 

φk 
T i, j 

(1 − φk 
T i, j 

) |∇ d ψ 

k 
i, j | cos θ, ψ 

k 
i, j φ

k +1 
D i, j 

−ψ 

k 
i, j φ

k 
D i, j 

= s ∇ d 

·
(
(Mψ 

k φk 
D + 

γ

ε
φk 

D φ
k 
T (ψ 

k ) 2 ) ∇ d μ
k +1 

)
i, j 

+ s ∇ d · (φk 
D ψ 

k ∇ d p 
k +1 ) i, j 

+ s ∇ d ·
(
γc 

ε̄
φk 

D φ
k 
C (ψ 

k ) 2 ∇ d μ
k +1 
C 

)
i, j 

− sA ∇ d ·
(
φk 

D (ψ 

k ) 2 ∇ d (	
k +1 − ψ 

k +1 ) 
)

i, j 

− s ∇ d · (ψ 

k φk 
D v 

k ) i, j + sψ 

k 
i, j S D i, j 

, 

 

k 
i, j φ

k +1 
C i, j 

− ψ 

k 
i, j φ

k 
C i, j 

= s ∇ d ·
(
γ

ε
φk 

T φ
k 
C (ψ 

k ) 2 
)
∇ d μ

k +1 ) i, j 

+ s ∇ d · (φk 
C ψ 

k ∇p k +1 ) i, j + s ∇ d 

·( M̄ ψ 

k φk 
C + 

γc 

ε̄
(φk 

C ) 
2 (ψ 

k ) 2 ∇ d μ
k +1 
C ) i, j 

− sA ∇ d · (φk 
C (ψ 

k ) 2 ∇ d (	
k +1 

−ψ 

k +1 )) i, j − s ∇ d · (ψ 

k φk 
C v 

k ) i, j + sψ 

k 
i, j S C i, j 

, 
ψ 

k 
i, j μ

k +1 
C i, j 

= ψ 

k 
i, j f 

′ 
c (φ

k +1 
C i, j 

) − ε̄2 ∇ d · (ψ 

k ∇φk +1 
C ) i, j 

−ψ 

k f ′ e (φ
k 
C i, j 

) , 

−∇ 

2 p k +1 
i, j 

= 

γ

ε
∇ d · (φk 

T ψ 

k ∇ d μ
k +1 ) i, j 

+ 

γc 

ε̄
∇ d · (φk 

C ψ 

k ∇ d μ
k +1 
C ) i, j 

+ A ∇ d · (ψ 

k ∇ d (	
k +1 − ψ 

k +1 )) i, j 

−∇ d · v i , j 
k + S k +1 

T i, j 

ψ 

k +1 
i, j 

ψ 

k +1 
i, j 

+ δ̄
, 

ψ 

k +1 
i, j 

− ψ 

k 
i, j = 

sγ

ε
∇ d · (φk 

T (ψ 

k ) 2 ∇ d μ
k +1 ) i, j 

+ s ∇ d · (ψ 

k ∇ d p 
k +1 ) i, j 

+ 

sγc 

ε̄
∇ d · (φk 

C (ψ 

k ) 2 ∇ d μ
k +1 
C ) i, j 

+ s ∇ d · ( ˜ M (ψ 

k ) ∇ d ̃  μk +1 ) i, j − sψ 

k 
i, j ∇ 

2 
d p 

k +1 
i, j 

− sγ

ε
ψ 

k 
i, j ∇ d · (φk 

T ψ 

k ∇ d μ
k +1 ) i, j 

− sγc 

ε̄
ψ 

k 
i, j ∇ d · (φk 

C ψ 

k ∇ d μ
k +1 
C ) i, j 

− sA ∇ d · ((ψ 

k ) 2 ∇ d (	
k +1 − ψ 

k +1 )) i, j 

+ sAψ 

k 
i, j ∇ d · (ψ 

k ∇ d (	
k +1 − ψ 

k +1 )) i, j 

− s v k i, j · ∇ d ψ 

k 
i, j , 

˜ μk +1 
i, j 

= f ′ c (ψ 

k +1 
i, j 

) − ˜ ε2 ∇ 

2 
d ψ 

k +1 
i, j 

− f ′ e (ψ 

k 
i, j ) , 

nd 

 = ∇ d · (D (φk +1 
T ) ∇ d n 

k +1 ) i, j − n 

k +1 
i, j 

[ 
(φk +1 

T i, j 
− φk +1 

D i, j 
) ψ 

k 
i, j 

+ νH 
p (1 − Q(ψ 

k +1 
i, j 

φk +1 
T i, j 

)) + νT 
p Q(ψ 

k +1 
i, j 

φk +1 
T i, j 

) 
] 

+ (n c ) i, j 

(
νH 

p (1 − Q(ψ 

k +1 
i, j 

φk +1 
T i, j 

)) + νT 
p Q(ψ 

k +1 
i, j 

φk +1 
T i, j 

) 
)
. 

To solve the fully coupled, nonlinear system of equations at

he implicit time step, we use a nonlinear multigrid method

 Trottenberg et al., 2001 ). We refer the reader to Chen and Lowen-

rub (2014b) ; Chen et al. (2014a) and Chen (2012) for more details

f the algorithm. 
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